TDD Nuggets /

Ideally test-first which challenges you to think about the class interface thoroug

Test first or test Iast/ However in reality it's a mix. Sometimes you begin with design discussion, implemen

\ the basic skeleton first and move towards creating tests

=+ YAGNI (You ain't gonna need itO
ﬂ* DRY (Don't Repeat Yoursell

Design Principles used most frequently

k-’ SRP (Single Responsibility Principle’

Less number of lines in a method, less methods and more classe

High level design of any system. Defines major architecture components and the interaction between them.

=+ Strategic Design 1 Does not get into the details of the implementation

\ In TDD the strategic design can be done on a whiteboard or a piece of paper.

* Defines how exactly the component is going to work.
Tactical Design * The tactical design contains each and every minute detail of that component.

\ happens while developing the application through tests

In reality it's difficult to evovle a design with just tests without considering the strategic design in mind.
If not done properly you may get into mess and create classes which may not make much in the bigger
picture. You may reach to a situation where refactory also doesnt work anymore.

TDD
Testability and Design Evolution

/

\

Don't insert Design Pattern Forcefully

Design Patterns /~ : , ,
<_ Create Simple Design At First Look for evolving design patterns in code

Testing method also should follow SRP

\Testability of the class | Test method also should affirm the atomocity of a test
\At most there should be 1-2 assertions in a test method

create methods, classes

> 200-300 lines of code for a tes _ Problems in design probably

Test Smells[pollutes the test class itself

“_ test data within a test class _
“_ Instead use ObjectMother

If testing is an issue make them default scope

Testing of private methods _
“_ If reusable, refactor and put them as public methods

Groovy doesnt care about private/protected part while testing. So you may not need to have
setters or getters

You can create a simple class which just tests the setters getters mechanically

Testing Challenges

Increases Class Length

Should we test setters or getters just for the heck of increasing the Testabil Pollutes the namespace

_ Lowers Code Coverage
Why not public fields [Difficult to track who modified it and when

Possible in Groovy

Difficult to provide setters later

_ New Generation Languages thinking on lines of developer

Testing for void methoc __ Test for behavior change instead of returned value

Not Necessary To Follow All The Rule

Rule Book ~

“_ Experience and Decide

